Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{s}-\mathrm{O})=0.001 \AA$
R factor $=0.021$
$w R$ factor $=0.058$
Data-to-parameter ratio $=28.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Guanidinium dihydrogenarsenate

The title compound, $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$, contains a network of guanidinium cations and dihydrogenarsenate anions. The component species interact by way of cation-to-anion N $\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the latter leading to infinite sheets of $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$anions.

Comment

The title compound, (I), was prepared as part of ongoing studies of hydrogen-bonding interactions in molecular salts (Wilkinson \& Harrison, 2004).

(I)

The $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$anion in (I) shows its normal tetrahedral geometry (Fig. 1) about As [mean As- $\mathrm{O}=1.684$ (2) \AA], with the usual distinction between protonated and unprotonated As-O bond lengths (Wilkinson \& Harrison, 2004); see Table 1. The three $\mathrm{C}-\mathrm{N}$ bond lengths in the propeller-shaped $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)^{+}$cation are similar (Table 1), indicating that the usual model of electron delocalization in this species, leading to a $\mathrm{C}-\mathrm{N}$ bond order of 1.33 , is applicable here.

As well as Coulombic forces, the component species in (I) interact by means of a network of cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as detailed in Table 2. All the guanidinium atoms participate in hydrogen bonds (one of which, via H 8 , is bifurcated with notably longer $\mathrm{H} \cdots \mathrm{O}$ separations than the others), such that the $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)^{+}$ cation makes $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ links to five adjacent $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$ tetrahedra as shown in Fig. 2. For the simple $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds, the mean $\mathrm{H} \cdots \mathrm{O}$ distance $=2.18 \AA$, mean $\mathrm{N} \cdots \mathrm{O}=2.951$ (3) \AA, and the mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle is 150°.

Figure 1
Asymmetric unit of (I) (50\% displacement ellipsoids). The hydrogen bond is indicated by a dashed line.

Received 8 September 2005 Accepted 12 September 2005 Online 17 September 2005

Figure 2
Detail of the cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ links (dashed lines) in (I). Symmetry codes are as in Table 2.

Figure 3
Detail of a part of a (100) hydrogen-bonded sheet of $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$groups in (I), in polyhedral representation. Symmetry codes are as in Table 2.

The $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$units are linked into infinite sheets (Fig. 3) by way of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The $\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ interaction (see Table 2 for symmetry codes) results in inver-sion-symmetry-generated dimeric pairs of $\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]^{-}$tetrahedra linked by a double (i.e. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}+\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$) hydrogen bond. The $\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {ii }}$ bond links the dimers into an infinite sheet (Fig. 3) propagating in (100). The As $\cdots A s^{i}$ and As $\cdots A s^{\text {ii }}$ separations are 4.0148 (3) and 5.0190 (3) \AA, respectively. If the topological connectivity of the As atoms is considered, a 6^{3} sheet (O^{\prime} Keeffe \& Hyde, 1996) arises, i.e. every As node participates in three polyhedral six-ring loops.

The packing for (I) (Fig. 4) results in alternating organic and inorganic layers with respect to the a axis direction. The structure of (I) is distinct from other ammonium hydrogenarsenate salts where isolated pairs of tetrahedra (Todd \&

Figure 4
The packing in (I), projected down [001], showing the (100) dihydrogenarsenate layers mediated by guanidinium cations. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are not shown.

Harrison, 2005) or various kinds of polymeric chains (Wilkinson \& Harrison, 2004) occur.

Experimental

An aqueous guanidine solution ($0.5 \mathrm{M}, 10 \mathrm{ml}$) was added to an $\mathrm{H}_{3} \mathrm{AsO}_{4}$ solution $(0.5 \mathrm{M}, 10 \mathrm{ml})$ to give a clear solution. A mass of chunks and blocks of (I) grew as the water evaporated over the course of a few days.

Crystal data

$\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)\left[\mathrm{H}_{2} \mathrm{AsO}_{4}\right]$
$M_{r}=201.02$
Monoclinic, $P 2_{b} / c$
$a=6.1571$ (3) A
$b=13.7052(6) \AA$
$c=7.7208$ (3) \AA
$\beta=91.715(1)^{\circ}$
$V=651.22(5) \AA^{3}$
$Z=4$
$D_{x}=2.050 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4819 reflections
$\theta=3.0-32.5^{\circ}$
$\mu=5.18 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.49 \times 0.29 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.172, T_{\text {max }}=0.510$
7302 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.058$
$S=1.06$
2353 reflections
83 parameters
H -atom parameters constrained

2353 independent reflections 2068 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=32.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-18 \rightarrow 20$
$l=-11 \rightarrow 11$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0338 P)^{2}\right.$
$+0.0391 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.62 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0145 (12)

Table 1
Selected bond lengths (\AA).

As1-O1	$1.6532(11)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.314(2)$
As1-O2	$1.6538(10)$	$\mathrm{C} 1-\mathrm{N} 2$	$1.323(2)$
As1-O4	$1.7135(10)$	$\mathrm{C} 1-\mathrm{N} 3$	$1.324(2)$
As1-O3	$1.7144(11)$		

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.85	1.83	2.6684 (16)	167
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.92	1.65	2.5648 (16)	174
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.86	2.13	2.9185 (18)	153
$\mathrm{N} 1-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.24	2.993 (2)	147
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O} 2^{\text {iv }}$	0.86	2.15	2.955 (2)	157
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O}^{\text {v }}$	0.86	2.28	2.994 (2)	140
$\mathrm{N} 3-\mathrm{H} 7 \cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.11	2.8962 (17)	152
N3-H8 ${ }^{\text {O }} \mathrm{O}^{\text {vi }}$	0.86	2.47	3.1582 (18)	138
$\mathrm{N} 3-\mathrm{H} 8 \cdots \mathrm{O}^{\text {v }}$	0.86	2.55	3.1965 (18)	133

The O -bound H atoms were found in difference maps and allowed for as riding in their as-found relative positions with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. The N -bound H atoms were included in the riding model approximation, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) \& ATOMS (Shape Software, 2004); software used to prepare material for publication: SHELXL97.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
O'Keeffe, M. \& Hyde, B. G. (1996). Crystal Structures, 1. Patterns and Symmetry, p 357. Washington DC, USA: Mineralogical Society of America.
Shape Software (2004). ATOMS. 525 Hidden Valley Road, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Todd, M. J. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m2026-mm2028.
Wilkinson, H. S. \& Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.

