Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{s-O}) = 0.001 \text{ Å}$ R factor = 0.021 wR factor = 0.058 Data-to-parameter ratio = 28.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Guanidinium dihydrogenarsenate

The title compound, $(CH_6N_3)[H_2AsO_4]$, contains a network of guanidinium cations and dihydrogenarsenate anions. The component species interact by way of cation-to-anion N-H···O and anion-to-anion O-H···O hydrogen bonds, the latter leading to infinite sheets of $[H_2AsO_4]^-$ anions.

Comment

The title compound, (I), was prepared as part of ongoing studies of hydrogen-bonding interactions in molecular salts (Wilkinson & Harrison, 2004).

$$\begin{array}{c} \mathsf{H_2N} & \mathsf{NH_2^+} \\ \mathsf{NH_2} \\ (I) \end{array} \cdot (\mathsf{H_2AsO_4})^- \end{array}$$

The $[H_2AsO_4]^-$ anion in (I) shows its normal tetrahedral geometry (Fig. 1) about As [mean As-O = 1.684 (2) Å], with the usual distinction between protonated and unprotonated As-O bond lengths (Wilkinson & Harrison, 2004); see Table 1. The three C–N bond lengths in the propeller-shaped $(CH_6N_3)^+$ cation are similar (Table 1), indicating that the usual model of electron delocalization in this species, leading to a C–N bond order of 1.33, is applicable here.

As well as Coulombic forces, the component species in (I) interact by means of a network of cation-to-anion $N-H\cdots O$ and anion-to-anion $O-H\cdots O$ hydrogen bonds, as detailed in Table 2. All the guanidinium atoms participate in hydrogen bonds (one of which, *via* H8, is bifurcated with notably longer $H\cdots O$ separations than the others), such that the $(CH_6N_3)^+$ cation makes $N-H\cdots O$ links to five adjacent $[H_2AsO_4]^-$ tetrahedra as shown in Fig. 2. For the simple $N-H\cdots O$ bonds, the mean $H\cdots O$ distance = 2.18 Å, mean $N\cdots O = 2.951$ (3) Å, and the mean $N-H\cdots O$ angle is 150°.

Figure 1 Asymmetric unit of (I) (50% displacement ellipsoids). The hydrogen bond is indicated by a dashed line.

Received 8 September 2005 Accepted 12 September 2005 Online 17 September 2005

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Detail of the cation-to-anion N-H···O links (dashed lines) in (I). Symmetry codes are as in Table 2.

Figure 3

The $[H_2AsO_4]^-$ units are linked into infinite sheets (Fig. 3) by way of the $O-H \cdots O$ hydrogen bonds. The $O3-H1 \cdots O1^{i}$ interaction (see Table 2 for symmetry codes) results in inversion-symmetry-generated dimeric pairs of [H₂AsO₄]⁻ tetrahedra linked by a double (*i.e.* $O-H\cdots O + O\cdots H-O$) hydrogen bond. The O4-H2···O2ⁱⁱ bond links the dimers into an infinite sheet (Fig. 3) propagating in (100). The As...Asⁱ and As...Asⁱⁱ separations are 4.0148 (3) and 5.0190 (3) Å, respectively. If the topological connectivity of the As atoms is considered, a 6^3 sheet (O'Keeffe & Hyde, 1996) arises, *i.e.* every As node participates in three polyhedral six-ring loops.

The packing for (I) (Fig. 4) results in alternating organic and inorganic layers with respect to the a axis direction. The structure of (I) is distinct from other ammonium hydrogenarsenate salts where isolated pairs of tetrahedra (Todd &

The packing in (I), projected down [001], showing the (100) dihydrogenarsenate layers mediated by guanidinium cations. The N-H···O hydrogen bonds are not shown.

Harrison, 2005) or various kinds of polymeric chains (Wilkinson & Harrison, 2004) occur.

Experimental

An aqueous guanidine solution (0.5 M, 10 ml) was added to an H_3AsO_4 solution (0.5 *M*, 10 ml) to give a clear solution. A mass of chunks and blocks of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(CH_6N_3)[H_2AsO_4]$	$D_x = 2.050 \text{ Mg m}^{-3}$
$M_r = 201.02$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 4819
a = 6.1571 (3) Å	reflections
b = 13.7052 (6) Å	$\theta = 3.0-32.5^{\circ}$
c = 7.7208 (3) Å	$\mu = 5.18 \text{ mm}^{-1}$
$\beta = 91.715 \ (1)^{\circ}$	T = 295 (2) K
V = 651.22 (5) Å ³	Block, colourless
Z = 4	$0.49 \times 0.29 \times 0.13 \text{ mm}$

Data collection

Bruker SMART1000 CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.172, \ T_{\max} = 0.510$ 7302 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.058$ S = 1.062353 reflections 83 parameters H-atom parameters constrained

```
2353 independent reflections
2068 reflections with I > 2\sigma(I)
R_{\rm int} = 0.027
\theta_{\rm max} = 32.5^{\circ}
h = -9 \rightarrow 9
k = -18 \rightarrow 20
l = -11 \rightarrow 11
```

 $w = 1/[\sigma^2(F_0^2) + (0.0338P)^2]$ + 0.0391P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL Extinction coefficient: 0.0145 (12)

 Table 1

 Selected bond lengths (Å).

As1-O1	1.6532 (11)	C1-N1	1.314 (2)
As1-O2	1.6538 (10)	C1-N2	1.323 (2)
As1-O4	1.7135 (10)	C1-N3	1.324 (2)
As1-O3	1.7144 (11)		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H1$ ··· $O1^{i}$	0.85	1.83	2.6684 (16)	167
$O4-H2\cdots O2^{ii}$	0.92	1.65	2.5648 (16)	174
N1-H3···O2	0.86	2.13	2.9185 (18)	153
$N1-H4\cdots O1^{iii}$	0.86	2.24	2.993 (2)	147
$N2-H5\cdots O2^{iv}$	0.86	2.15	2.955 (2)	157
$N2-H6\cdots O4^{v}$	0.86	2.28	2.994 (2)	140
$N3-H7\cdots O1^{iii}$	0.86	2.11	2.8962 (17)	152
N3−H8···O1 ^{vi}	0.86	2.47	3.1582 (18)	138
$N3{-}H8{\cdots}O4^v$	0.86	2.55	3.1965 (18)	133

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) x + 1, y, z + 1; (vi) -x + 1, -y + 1, -z + 1.

The O-bound H atoms were found in difference maps and allowed for as riding in their as-found relative positions with $U_{iso}(H) = 1.2U_{eq}(O)$. The N-bound H atoms were included in the riding model approximation, with N-H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997) & *ATOMS* (Shape Software, 2004); software used to prepare material for publication: *SHELXL97*.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

O'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures, 1. Patterns and Symmetry, p 357. Washington DC, USA: Mineralogical Society of America. Shape Software (2004). ATOMS. 525 Hidden Valley Road, Kingsport, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026-mm2028.

Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.